Hypothesis-driven

Consider lottery T which yields x_1 with p_1 and $-x_2$ with p_2

Utility / Decision theory	How to calculate	Transformation in	Number of parameters
Expected value/Risk Neutrality (RN)	RN(T) = $p_1 * x_1 - p_2 * x_2$	No transformation	0
Expected Utility Theory (EUT)	EUT(T) = $p_1 * u(x_1) - p_2 * u(x_2)$ Example: $u(x_i) = \frac{{x_i}^{1-r}}{1-r}$, where i={1,2}	Payoffs	1 (risk aversion parameter r)
Cumulative Prospect Theory (CPT)	CPT(T) = $w_{+}(p_{1}) * u(x_{1}) - w_{-}(p_{2})u(x_{2})$ Example: $u(x) = \begin{cases} x^{\alpha} if \ x \geq 0 \\ \lambda \ (-x)^{\beta} \ if \ x < 0 \end{cases}$ $w_{+}(p) = \frac{p^{\gamma}}{(p^{\gamma} + (1-p)^{\gamma})^{1/\gamma}} \text{ and } w_{-}(p) = \frac{p^{\delta}}{(p^{\delta} + (1-p)^{\delta})^{1/\delta}}$	Probabilities	4 or 5 (alpha, beta, gamma, delta and lambda)